Physics

In a significant breakthrough, a team of researchers from the University of Warsaw has designed a quantum-inspired spectrometer capable of super-resolving short light pulses. This noteworthy advancement, developed in the Quantum Optical Devices Lab at the university’s Centre for Quantum Optical Technologies, not only enhances the capabilities of spectroscopy but also holds promise for future
0 Comments
The study published in Physical Review Letters sheds light on the first experimental observation of non-Hermitian edge burst in quantum dynamics. This groundbreaking research demonstrates the unique behavior of systems characterized by dissipation, gain-and-loss mechanisms, and interactions with the environment. The study opens up new possibilities for understanding real-world systems that exhibit properties not seen
0 Comments
A groundbreaking discovery in the field of nonlinear optical effects has been made by a research team led by Professor Sheng Zhigao at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences. The team has successfully observed the strong nonlinear magnetic second harmonic generation (MSHG) induced by the ferromagnetic order in monolayer
0 Comments
Neutrinos, the second most abundant particles in the universe, are notoriously difficult to study due to their minimal interactions with matter. The recent detection of the first neutrino interactions at Fermilab’s Short-Baseline Near Detector (SBND) marks a significant milestone in the field of particle physics. The SBND collaboration, consisting of 250 physicists and engineers from
0 Comments
Advanced electronic devices are on the brink of a revolution thanks to a groundbreaking discovery by a collaborative team of researchers from Charles University of Prague, CFM (CSIC-UPV/EHU) center in San Sebastian, and CIC nanoGUNE’s Nanodevices group. This team has successfully designed a complex material with unique properties in the realm of spintronics. The publication
0 Comments
The world of quantum physics is often viewed as highly complex and chaotic, with systems consisting of interacting small particles posing various challenges for researchers. However, a recent study led by Professor Monika Aidelsburger and Professor Immanuel Bloch from the LMU Faculty of Physics suggests that some of these systems can be described using simple
0 Comments
The study conducted by researchers from Skoltech, Universitat Politècnica de València, Institute of Spectroscopy of RAS, University of Warsaw, and University of Iceland has shed light on the spontaneous formation and synchronization of multiple quantum vortices in optically excited semiconductor microcavities. The demonstration of polariton quantum vortices in neighboring cells of optically generated lattices with
0 Comments
Researchers at the National University of Singapore (NUS) have made a significant breakthrough in simulating higher-order topological (HOT) lattices with unparalleled precision using digital quantum computers. This advancement holds promise for understanding complex quantum materials and their robust quantum states, which are highly desirable for various technological applications. The study of topological states of matter
0 Comments