Physics

The world of quantum physics is often viewed as highly complex and chaotic, with systems consisting of interacting small particles posing various challenges for researchers. However, a recent study led by Professor Monika Aidelsburger and Professor Immanuel Bloch from the LMU Faculty of Physics suggests that some of these systems can be described using simple
0 Comments
The study conducted by researchers from Skoltech, Universitat Politècnica de València, Institute of Spectroscopy of RAS, University of Warsaw, and University of Iceland has shed light on the spontaneous formation and synchronization of multiple quantum vortices in optically excited semiconductor microcavities. The demonstration of polariton quantum vortices in neighboring cells of optically generated lattices with
0 Comments
Researchers at the National University of Singapore (NUS) have made a significant breakthrough in simulating higher-order topological (HOT) lattices with unparalleled precision using digital quantum computers. This advancement holds promise for understanding complex quantum materials and their robust quantum states, which are highly desirable for various technological applications. The study of topological states of matter
0 Comments
The recent study titled “Near-complete chiral selection in rotational quantum states” published in Nature Communications has brought attention to the breakthrough achieved by the Controlled Molecules Group at the Fritz Haber Institute. Led by Dr. Sandra Eibenberger-Arias, the team has made significant progress in the field of chiral molecules, challenging previous assumptions and opening up
0 Comments
Equation of state measurements in high-pressure environments have always presented challenges to scientists in the field of condensed-matter sciences. Recently, a breakthrough paper published in the Journal of Applied Physics by an international team of researchers from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory, and Deutsches Elektronen-Synchrotron introduces a new sample configuration that pushes
0 Comments
In a groundbreaking study conducted by Cornell University researchers, the potential of acoustic sound waves in controlling the motion of electrons within a diamond lattice defect has been unveiled. This discovery opens new doors for enhancing the sensitivity of quantum sensors and revolutionizing the field of quantum devices. The research, titled “Coherent acoustic control of
0 Comments
The field of quantum chemistry is rapidly evolving, with researchers from the University of Trento and the University of Chicago proposing a generalized approach to understanding interactions between electrons and light. This groundbreaking study not only paves the way for the development of quantum technologies but also holds the promise of uncovering new states of
0 Comments
Antimatter, a concept that has intrigued and puzzled scientists for nearly a century, continues to be a subject of intense research and exploration. In a recent breakthrough at the Brookhaven National Lab in the US, physicists have made a significant discovery regarding the heaviest “anti-nuclei” ever observed. This finding sheds light on the properties and
0 Comments