Chemistry

Tungsten pentaboride, WB5-x, has recently been identified as a promising alternative to traditional catalysts due to its unique properties. A group of researchers led by Professor Alexander Kvashnin from Skoltech’s Energy Transition Center has published a new paper shedding light on the potential applications of this substance in various fields. In the study, researchers found
0 Comments
In a groundbreaking development, chemists at the National University of Singapore (NUS) have pioneered the creation of hexavalent photocatalytic covalent organic frameworks (COFs) that mimic natural photosynthesis for the production of hydrogen peroxide (H2O2). Unlike the traditional method of H2O2 production which relies on costly noble metal catalysts and hazardous solvents, this innovative approach utilizes
0 Comments
As California shifts towards renewable energy sources, the need for effective energy storage technologies becomes increasingly apparent. Solar power generation decreases at night and during winter, while wind power is intermittent. This variability in renewable energy sources necessitates the use of natural gas to stabilize the electric grid. However, this dependency on natural gas is
0 Comments
Hydrogen (H2) has long been considered a promising fuel for reducing greenhouse gases, especially when produced by splitting water molecules (H2O) using renewable energy sources. However, the process of breaking water into hydrogen and oxygen is not as simple as it may seem. Two simultaneous electrochemical reactions take place, each requiring specific catalysts to facilitate
0 Comments
In a groundbreaking study conducted by a team at Trinity College Dublin, the phenomenon of split ends in hair is being dissected like never before. Led by Professor David Taylor, the team has developed a machine specifically designed to recreate the process of combing tangled hair to better understand the science behind split ends. This
0 Comments
Halogen bonds have recently been identified as key contributors to directing sequential dynamics in multifunctional crystals, providing valuable insights for the advancement of ultrafast-response times in multilevel optical storage. These intermolecular interactions are characterized by the attraction between a halogen atom and another atom with lone pairs, typically a molecular entity with high electron density.
0 Comments
The waste-to-wealth movement has sparked a wave of innovation in the field of technology aimed at converting greenhouse gases into valuable materials. One technology that has garnered significant attention is the catalytic conversion of methane into methanol, a versatile industrial solvent and raw material for chemical synthesis. The traditional industrial process for this conversion is
0 Comments
Auxetic materials, with their ability to defy common sense by expanding when stretched and narrowing when compressed, hold tremendous promise for a wide range of applications. From bomb-resilient buildings to comfortable clothing, the possibilities seem endless. However, despite their unique properties, auxetic products have faced challenges in reaching the market. Researchers at the National Institute
0 Comments
Prof. Bozhi Tian’s lab has embarked on a groundbreaking journey to merge the realms of electronics and biology. Their latest innovation, dubbed “living bioelectronics,” combines living cells, gel, and electronics to seamlessly integrate with living tissue. In a study published in Science, the researchers unveiled patches consisting of sensors, bacterial cells, and a gel made
0 Comments
The field of biocatalysis has long been focused on optimizing natural enzyme functions for synthetic chemistry purposes. However, a recent study by UC Santa Barbara researchers, led by chemistry professor Yang Yang, has taken a groundbreaking approach by exploring entirely new enzymatic reactions through the use of photobiocatalysis. This innovative method leverages the power of
0 Comments